Stochastic Homogenisation of Singularly Perturbed Integral Functionals
ثبت نشده
چکیده
We study the relative impact of small-scale random inhomogeneities and singular perturbations in nonlinear elasticity. More precisely, we analyse the asymptotic behaviour of the energy functionals Fε(ω)(u) = ∫ A ( f ( ω, x ε ,Du ) + ε|∆u| ) dx, where ω is a random parameter and ε > 0 denotes a typical length-scale associated with the variations in the elastic properties of the body. For f stationary and ergodic, we show that when ε → 0 the randomly inhomogeneous material described by Fε(ω) behaves (almost surely) like a homogeneous deterministic material. The limit stored energy density is given in terms of an asymptotic cell formula in which the Laplacian perturbation explicitly appears.
منابع مشابه
Stochastic Homogenisation of Singularly Perturbed Integral Functionals
We study the relative impact of small-scale random inhomogeneities and singular perturbations in nonlinear elasticity. More precisely, we analyse the asymptotic behaviour of the energy functionals Fε(ω)(u) = ∫ A ( f ( ω, x ε ,Du ) + ε|∆u| ) dx, where ω is a random parameter and ε > 0 denotes a typical length-scale associated with the variations in the elastic properties of the body. For f stati...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملA hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer
The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...
متن کاملAsymptotic Analysis of Second Order Nonlocal Cahn-Hilliard-Type Functionals
In this paper the study of a nonlocal second order Cahn–Hilliard-type singularly perturbed family of functions is undertaken. The kernels considered include those leading to Gagliardo fractional seminorms for gradients. Using Γ convergence the integral representation of the limit energy is characterized leading to an anisotropic surface energy on interfaces separating different phases.
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کامل